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Universal metric properties of bifurcations of endomorphisms 
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$ C.E.A. Centre d'Etudes NuclCaires de Saclay, Division de la Physique, BP2, 91190 
Gif-sur-Yvette, France 

Received 6 March 1978 

Abstract. Endomorphisms of the real axis with one extremum have some universal metric 
properties which depend only on their analytic dependence near the extremum (bifurcation 
velocity, reduction parameter). It is shown how this problem is similar to the renor- 
malisation problem, and how the bifurcation velocity may be derived from a fixed-point 
theory. 

Several renormalisation methods are discussed for the reduced endomorphism 

.To : x + ra ( x )  = 1 - a lx ll+s.  
They all give the same (exact) result for small E .  

1. Introduction 

Because of their relative simplicity, endomorphisms of the real axis have been exten- 
sively studied, and a number of results have been obtained for some classes of functions 
(May 1976, Li and Yorke 1975). 

In this paper, weintend to give some results for endomorphisms (or mappings) T, of 
an interval I c E4 depending on one parameter a ; the function T, is continuous, convex 
with a unique maximum (or critical point) on I. It is convenient to assume that the 
derivative (d/dx)T,(x) exists except perhaps at the critical point. 

In most theoretical works which have been devoted to this class of mappings, 
supplementary conditions have been introduced, but it appears from numerical cal- 
culations that they are not essential. Some universal features appear which are 
independent of the shape of the function T,. Roughly, they are of two kinds. Some of 
them depend only on the existence of a unique maximum and can be called structural, 
e.g. the order of occurrence of periods (Metropolis et a1 (1973) and the internal 
similarity (Derrida et a1 1978, referred to hereafter as I). The other universal results 
may be called metric (Feigenbaum 1977a,b) and depend on the shape of T, near the 
extremum c. 

For example, if IT,(x) - T,(c)I - 1x -cl'+', the bifurcation velocity and reduction 
parameter (to be defined in § 2.3) depend on the coefficient E only. Feigenbaum has 
already pointed out the connection between this property of universality and the idea of 
renormalisation group theory in critical phenomena. 

We shall focus here on the metric properties. Some theoretical results may be 
obtained, and an extension of the renormalisation group approach is possible. 

0305-4470/79/030269 + 28$01.00 @ 1979 The Institute of Physics 269 



270 B Derrida, A Gervois and Y Pomeau 

In 0 2 we recall some definitions for periods and results obtained by Metropolis et a1 
(1973) and by the authors. In 0 3 we enlarge Feigenbaum's considerations and show 
how the bifurcation problem can be considered as being similar to the phase transition 
problem. Critical exponents may be defined, but there are an infinite number of critical 
points (and exponents). In 0 4 we try to get these exponents by approximate renor- 
malisation methods and compare their rapidity of convergence with the exact (numeri- 
cal) results. Because of universality, we restrict ourselves to the reduced endomor- 
phism Fa of the interval I = (-1, + l ) ,  where a is a parameter: 

Fa: x + F a ( x ) =  l-alxll+'. (1.1) 

The piecewise linear mapping ( E  = 0) is already renormalised, and for small E all 
methods give the same first-order expression, which can be expected to be in good 
agreement with the exact result. For the quadratic case ( E  = 1) the simplest method 
gives the exact result within an error of 20%, and more sophisticated ways reach an 
accuracy better than 1% with not too much calculation. In 0 5 we derive directly for 
small E the first-order correction to the piecewise linear case E = 0, and obtain the same 
results as by renormalisation theory in 0 4. Even when we put E = 1 (quadratic case) 
into the first-order formulae, we get the exact result within an error of 2% ! 

2. Generalities on periodic points 

2.1. Definitions 

A point x belongs to a period k if 

TLk) ( x )  = x (2 . la )  

with 

Tlf' ( x )  # x i f l < k  (2. lb)  

where by definition 

TL"(x)= T , ( X )  (2.2a) 

and 

T'," ( x )  = Ta(T"-" ( x ) )  = X I  (2.2b) 

is the lth iterate of x .  The iterates x (  = x o  = x k ) ,  X I ,  . . . , x k - 1  form a sequence. 
The period is stable if for a neighbourhood U of x O  

Y E  U j l T " ) ( X O ) - T : ) ( y ) l + O  

for 1 sufficiently large. 
When the derivative ( d / d x ) T , ( x )  = TI, ( x )  exists, the above condition is equivalent 

to 

- l < s < l  (2.3) 
with 

s = T & ( X O ) T h ( X l ) .  . . T I , ( X k - 1 ) .  (2.4) 
When a increases, a stable period appears for the value a, of parameter a for which 
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s = + 1 and disappears for the value a ,  of a for which s = -1. Then a period 2k 
becomes stable; a,  is by definition a bifurcation point on the parameter axis. Interval 
(as, a,) is the stability zone. 

For a given value a of the parameter, three situations may occur: (i) no stable period 
exists; (ii) one stable period exists; (iii) two or more stable period exist. In the latter case 
it may happen that two points attracted by two different stable periods may be as near to 
each other as we like, and many complications occur. Presumably these difficulties may 
be avoided in general when one restricts oneself to the class of functions defined in the 
introduction, though Metropolis et a1 (1973) give an example where two stable periods 
coexist. At least it is believed that the number of these ‘spurious’ periods is finite, and 
we may exhibit endomorphisms where only one stable period exists. By definition a 
‘spurious’ period is not found in the construction of Metropolis et al. This is due to the 
fact that, when the mapping is continuously changed, the critical point never belongs to 
this spurious period. For example, the piecewise linear mapping (Derrida and Pomeau 
1979) 

x < l  

[ ::1+ r )  -Ax r < x  
T * ( x ) =  A l < x < r  

and its peculiar case r = 1 that we studied in I have no  ‘spurious’ periods. 
In the following, we shall assume that situation (iii) above does not occur. 

2.2. Superstability and MSS sequences 

The period k is superstable if s = 0. It corresponds to a value of the parameter a for 
which the critical point belongs to the period. Choosing then c = x l ,  the (k - 1) iterates 
of c may be represented by a formal sequence Q of ( k  - 1) characters R (right) or L 
(left) 

( 2 . 5 ~ )  
where 

Q =U1 . . . U k - 1  

(2 .56)  

For example, the fixed point is represented by a sequence with 0 character (the ‘blank’ 
sequence b ) ,  the period 2 by the only character R, and so on. 

All sequences of R and L characters do not represent a period. For example, the first 
two symbols are always RL. When a sequence Q of ( k  - 1)  characters represents an 
actual superstable period k ,  we say that the sequence Q is allowed. Its length is k - 1. 
For k = 5, we have only three allowed sequences: RL3, RL2R and RLR2. 

These sequences may be visualised by setting on an axis the iterates x l ,  x2, . . . of the 
extremum (see figure 1).  When a goes from a,  (beginning of stability) to a ,  (end of 
stability) and to larger values passing through the superstable value, the ordering of the 
iterates is unchanged. Superstable periods give then a good picture of the whole stability 
zone, hence their importance. We shall use them indifferently to denote either the 
whole corresponding stability zone or the point of superstability in the parameter space. 
Except for periods 1 , 2  and 3,  many sequences exist corresponding to periods with the 
same number of points. The ordering of the point of the period and the location of the 
stability zone in the parameter space depend on the sequence. This is shown for periods 
with five points on figure 1. 
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RL3 

Stability zones 
opl ahll 0k21 ah21 a131 ah31 

I - - - 
R L R ~  RL'R RL3 

a 

Figure 1. Graphic representation of the iterates of the critical point 1 on an axis for the three 
allowed sequences with period 5 .  The last line shows for these sequences the non- 
intersecting stability zones on the parameter axis. 

These sequences Q have been studied by Metropolis et ul (1973) and by the present 
authors in I. We shall call them MSS sequences. We recall here the results which will be 
useful later on. From now on, we shall denote as up, aQ, . . . the value of the parameter 
for which the periods P, Q, . . . are superstable. 

(i) If P and Q are allowed sequences which are superstable for the values u p  and aQ 
respectively of the parameter, we say that 

P < Q  whenever u p  < aQ. (2 .6 )  

When a increases, the MSS sequences always appear in the same order, independently 
of T, (universal sequences). For example, 

b<R<RLR<RLR3LR< . . .  <RL<RL2RL< . . .  
and 

RLnl< RL"' if n l  <n2.  

Notice that, as shown in the above example, the first sequence after a given sequence is 
its harmonic: for instance RLR (period 4) follows R (period 2), RL2RL (period 6 )  
follows RL (period 3), and so on .  . . . 

Between two given sequences P I  and P2, we may always construct the sequence P3 
of minimal length. Thus the construction and ordering of all MSS sequences is possible 
(Metropolis er a1 1973). 

(ii) One may define on the set of allowed sequences an inner composition law 
denoted by *. Q and P being two allowed sequences corresponding to periods k and I ,  
Q * P is an allowed sequence of period kl. More precisely, if P =  

Q * P = Q T ~ Q T ~ . . , Q T / - ~ Q  (2.7) 

~ 1 ~ 2 .  . . ~ l - l ( ~ i  = R, L ) ,  
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where 

= U, if Q has an even number of R characters 
otherwise 

For example, the harmonic of Q is Q * R. 
By construction, the law * is not commutative, but is associative with neutral element 

b (corresponding to period 1). The sequence Q * P(Q # b )  is said to be factorisable or 
non-primary. The number of non-primary sequences is small compared with the 
number of primary sequences (Derrida et a1 1977, 1978). 

One important consequence is the law of internal similarity. For given Q, the 
mapping Q * : P + Q * P maps the whole set of MSS sequences into one of its parts and 
preserves the ordering relation. The set of all sequences between b and RLN (for every 
N) has the same structure as the set of sequences between Q and Q * RLN, and 
conversely every Q’ (Q < Q’< Q * RLN) can be written in the form Q’ = Q * P. This 
result is to be related to the Sarkovskii theorem (Sarkovskii 1964, Stefan 1977, Cosnard 
and Eberhard 1977) and is of great importance in showing the connection with 
renormalisation. A similar property does not exist for the mapping * P, * P : Q + Q * P, 
so we shall not deal with it any further. 

With the graphic representation, it is easy to see what the non-primary sequences 
correspond to. Let us show it in an example. For k = 6, there exist two non-primary 
sequences PI = R * RL = RLR3 and P:! = RL * R = RL’RL which are represented in 
figure 2 .  For PI (figure 2a)  we may draw a limit between points of the period numbered 
5 and 4; by mapping T,, at every iteration, this limit is crossed. On a large scale-i.e. if 
one assimilates each of the clusters 1-3-5 and 4-6-2 to a single point-the dynamics is 
that of period 2 ;  on a small scale-i.e. in each of the clusters 1-3-5 and 4-6-2-the 
dynamics is that of period 3. For sequence Pz, there are two separations (figure 2 6 ) ;  on 
a large scale the dynamics is that of period 3, and on a small scale that of period 2. More 
generally, if P = PI  * . . . * P,, there are n successive scales. For instance, if P = 
R * RL * R (figure 2c), the dynamics at large, medium and small scale is that of period 
2, 3 and 2 respectively. 

Figure 2. Different scales in non-primarysequences: (a) PI = R * RL; ( b )  Pz = RL * R ;  (c )  
P =  R * RL * R. 
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(iii) It is possible to recognise whether a given sequence is allowed or not and to 
compare it-in the sense of (2.6)-with other sequences without constructing all 
sequences with a smaller period. The classification has been found-because of the 
universality property (i)-by studying the simplest function T,, i.e. the piecewise linear 
mapping 9, 

2,: x - . 9 , ( x )  = 1 -alxl (2.9) 

(with a 3 1, as no superstable period exists if a < 1). 

derivable endomorphisms T, is that some non-primary periods cancel out. 

have been derived in I. We recall them here: 

largest real root of the polynomial 

The derivative of 9, does not exist at x = 1, but the only difference with everywhere 

We shall use in 9 5 some results concerning the piecewise linear mapping 2, which 

( a )  The value L ~ Q  of the parameter a for which the sequence Q is superstable is the 

k-1-1 k - 1  
g Q ( X ) =  1 +(Y&2x + . . + a k - 2 .  . . (Yix f . . . + ( Y k - 2 . .  . a O X  

where 

a ,  = -sgn &+ ' ) (o )  (2.10) 

and 

i f x f O  
otherwise. 

sgn x = (2.1 1) 

The {ai} are related in an obvious way to the R and L symbols. 
( 6 )  Because of the identity proved in I 

g Q * P ( x )  = g Q ( X ) g P ( X k )  (2.12) 

all sequences Q * P, Q being primary, define the same parameter do except when 
Q = R. The parameter d ~ + ~  (when Q = R )  is Lii'2. 

Notice that, as I(d/dx&?,(x)l = a except at the critical point, no period is stable 
except the fixed point at a < 1. 

3. Metric universal properties? 

3.1. Feigenbaum results 

Feigenbaum (1977a, b) succeeded in calculating numerically the value a, of the 
parameter a of the superstable harmonics R*" (of period 2") for several functions T,. 
He showed that: 

(i) When n increases, the {a,} are an increasing sequence with limit a, and 

a ,  - an - S i " .  (3.1) 

t In the bulk of the paper, the word 'critical' appears with two different meanings. In $ 5  1, 2 and 6, a critical 
point for a mapping is a point where the Jacobian of the transformation vanishes (in one-dimensional 
mappings the point where the derivative (d/dx)T,(x) is zero). In §I 3-5, critical points and critical exponents 
refer to the notion of critical points and critical exponents in phase transitions. These two definitions are 
traditional, and we maintain them since they do not appear at the same time in the paper. We hope that no 
ambiguity is possible. 



Universa 1 properties of bif urea tions 275 

More precisely, the ratio 

S n  =(an - -an- i ) / (an+i -an)  (3.2) 

has a limit S R  (defined by equation (3.1)) when n goes to infinity, and it depends only on 
the shape near the extremum c (and not on the function). If 

1 T, (X - Ta ( C  ) I - I X  - c 1 +' 

SR depends on E only. We shall call S R  the bifurcation velocity. 
(ii) For large n, we have the asymptotic conjugation law 

(3.3) 

where 4 is some (complicated) universal function, and yR is the reduction parameter. 
Both 9 (up to a linear homomorphism) and yR do not depend on the details of T, but 
only on the exponent E. The renormalisation methods start from equation (3.4). 

For E = 1 and different mappings T, Feigenbaum found S R  = 4.669 201 609 03 . . . , 
YR =2*502  907 875 0 9 5 7 . .  . . 

3.2. Other numerical results 

We repeated the calculations for more general sequences P I  * Q*" * P2 and cor- 
responding periods plq"p2. We focused our attention on the parameter aP1.Q*-*p2 in 
the particular transformation 9, for several possible sequences Q and P I .  Actually, for 
simplicity, we considered only sequences corresponding to small periods, i.e. 

( a )  Q = R ,  P I =  b, RL, RLZ 

( b )  Q = R L ,  Pi = b, R, RL2 

and the case P2 = RL", where RL" is the limit for sequences RL" when n is sufficiently 
large. 

Though sequences R*" behave in a slightly different manner than sequences Q*n, 
from our results (see tables 1 and 2) it seems that properties (i) and (ii) of Feigenbaum 
can be extended in the following way: 

(i) The parameter 

an = a P l * Q " * P 2  (3.5a) 

and the ratio 

a n  = (an -an-l)/(an+l - a n )  (3 .56 )  

tend to limits a, and SQ respectively as n + CO. The limit value SQ of 8, is a universal 
number which depends on Q and E only. 

(ii) When n becomes large, the asymptotic conjugation law (3.4) is true, y and (p 
depending only on E and Q. Sequence P2 plays no role. This seems reasonable as, when 
n becomes large, the plq" first characters of PI * Q*" * P2 depend on Q and P 1  only. 
The case E = 1 and Q = R ( P  = b )  is the one studied by Feigenbaum; for Q = RL we 
find ~ R L  = 55.247 . . . , YRL = 9.277 38 . . . . The parameters YRL and 8RL are much 
greater than Y R  and S R .  We shall see in 9 5 that this can be explained by computing SRL 
(and more generally 60) by expansion near E = 0. 
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Table 1. Fixed-point and bifurcation velocity for the set of sequences P * Q*" (n +a) for 
several MSS sequences Q and P in the quadratic case (e = 1) obtained numerically: ( a )  
Q =  R ;  ( b )  Q =  RL. 

(a) Q = R ,  c = l  ( b )  Q = R L ,  e = l  
Sequence 
P a* s R' a* 8 i: 

b 1.401 155 18909. .  . 0.214 169 3 7 . .  . 1.786440255 0,018 1005 
( U )  RL, ( b )  R 1.77981807 0.214 1693 1.484 583 30 0.018 100 
R L ~  1.942 173 796 0.214 169 1.942 550 324 0.018 100 

Table 2. Fixed-point and bifurcation velocity for the set of sequences R*" for different 
values of c. For e s l ,  we have plotted the values we get by using the 'first-order' 
approximation in e (see 5 5). 

Exact calculation Methods e = 0 

e a* 
for e s 1 

cp* = a * -  1 
( 2 + ;) - ' 

0 1 0.5 1 0.5 
0.1 1,1236 0.350 1,116 0,349 
1 1.401 15 0.214 17 1.28 0.179 
2 1.519 2995 0.167 
5 1.683 26 0.107 53 
9 1.772 6435 0.0808 
99 1,959 263 548 0.035 

Remarks 
1/2" 1. If E = 0 and Q = R, SR = 2  (as U Q * - , P ~  = u p  

2. From definition (3.4), YE,  if Q = P * P then So = S i ,  and more generally S p * n  = 
( S p ) " ,  but if Q =PI * Pz, in general S p , . p 2  # S P ,  Sp2 .  Equality is true at the lowest order 
when E is small (and Pi# R). When E is not small, we have the weaker property 
S P , * P 2  = S P 2 * P , .  We shall prove it in § 3.4. 

). 

3.3. 'Critical' exponent VQ 

One problem in bifurcation theory is to determine the stability zone for all periods, or 
equivalently to plot the length of the stable period k as a function of the parameter 
a :  k = k ( a ) .  From 0 2.1 it is assumed to be unique for a given a. When no stable finite 
period exists, one may set k ( a )  = 03, so that k ( a )  is a step function with an infinite 
number of jumps. For example, the first periods when a increases are the harmonics 
R*"; the stability zones are adjacent and become smaller when n becomes large (see 
figure 3 a ) .  Setting a, = U R W  for the superstable value of the parameter as a, - a, - 
S i " ,  we have on the nth step 

k ( a ) =  k ( a , ) - ( a *  - an)"R ( 3 . 6 ~ )  
which diverges as a power at the limit value a,, or more precisely 

k ( a ) =  (a*-a)YRgR(ln(a,-a)/ln SR) (3.66) 
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Figure 3. Study of the bifurcation points for the harmonics ( a )  R*" and ( b )  P * R*" of 
period q. (For convenience, we took P = RL, q = 3.) Stability zones are adjacent. The 
upper figures plot the stable periods as a function of a. The superstable values of the 
parameter ai = aR" and b, = aPIR*i are shown on the a axis. The lower curves show the 
length of the period as a function of a ; a, and b,  are the limit parameters, and the period is 
multiplied by 2 at each harmonic. 

where g R ( X )  is some discontinuous but periodic function: g R ( X  + 1) = g R ( X ) .  The 
exponent V R  depends on R and E only. As k(a,+l)=2k(a,) ,  we get for the critical 
exponent V R  

(3 .7 )  V R  = -In 2/ln S R .  

For example, if E = 1, V R  = -0.449 807. 
The same occurs if we consider the harmonics P * R *, of the sequence P of period p 

(figure 3b, with P = RL); setting 6 ,  = a P , ~ + n  as 6 , -  6 ,  - S i "  and k(b ,+ l )  = 2k(b , ) ,  we 
get the same power law k ( b )  - ( 6 ,  - bn)YR,  where vR is again given by (3 .7 ) .  

The situation is more complicated if we consider the sequences R*" * P, though the 
limit point is a,, as for R*", and periods are multiplied by a factor of 2 .  The stability 
zones are no longer adjacent, and between each zone there is a complicated structure 
with an infinite number of discontinuities. Because of internal similarity, the fine 
structure between c,, = a R + n a P  and is reproduced between c,,+~ and c, once the 
periods are multiplied by 2. A schematic plot of this situation can be found in figure 4. If 
again for the superstable values c ,  of the parameter we have the power law k ( e , )  - 
(c, - a*)YR, the true function k ( a )  is of the form 

where g R  is periodic ( g R ( X  + 1) = g R ( x ) )  and has, in general, an infinite number of 
jumps. The above expression describes the behaviour of k ( a )  near a,, even for values 
of a which do not correspond to a superstable period. 
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Figure 4. Plot of R*" * RL, R*" * RLR" and R*" * RLR8 when a + a ,  ( a  >a*). The 
same patterns (multiplied by a factor of 2) may be found for each n, especially the infinite 
value of k for R*" * RLR-. The power law (3.6) is true for P = RL (- - -) and P = RLR' 
(--) separately. For convenience, the scale is not respected. 

More generally, we may consider all sequences P I  * Q*" * P2, where Q # R is some 
sequence of period 4. All the superstable parameters a, = U P , . Q * ~ * P ~  converge to a 
limit a* = Q ~ ~ . ~ * -  ( a ,  depending on P I  but not on P2) ,  with velocity SQ, and periods are 
multiplied by 4. Again the stability zones are not adjacent; infinitely many dis- 
continuities exist between them. But for superstable periods 

(3.8) k ( a , )  - la, - U ,  I Y Q  

VQ = -In q/ln So 

where VQ is given by 

(3.9) 

(if E = 1 and Q = RL, we get VQ = -0.273 84), and near a,, we take into account all 
jumps and infinite discontinuities by writing 

k(a)-ja,-aj'~gQ(Inla,-aj/ln 8 0 )  (3.10) 

where gQ is some complicated function which is periodic (gQ(x + 1) = g Q ( x ) )  and may be 
infinite for certain values of its argument. 

Remarks 
1. The function gQ is not the same for a < a ,  and a >a,. This can be seen in figures 
3 ( a )  and 4 for Q = R. 
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2 .  From (3.9) and (3.5),  V Q * ~  = VQ, but there is no simple relation between V Q ~ ~ Q ~ ,  

and vQ2. Nevertheless, as S Q ~ * Q ~  = SQz*Q1, we have the weaker result V Q ~ * Q ~  = V Q ~ * Q ~ .  

3.4. Theoretical background 

If P and Q are MSS sequences, the parameter U Q * P  corresponding to the superstability 
of the non-primary MSS sequence Q * P is related to u p  by a function of the form 

a Q * P  = f Q ( a P )  (3.11) 

where fa is monotonic with respect to P (and thus to u p ) .  We may calculate f~ by 
expansion near E = 0 around the broken linear case (see § 5.31, but when E is not small it 
is possible to find this function f~ by numerical approximations only. 

In order to extend the definition of fa to the whole stability zone of the periods P and 
Q * P, one may write 

a' = fQ(a) (3.12) 

whenever a and a '  belong to the stability zone of P and Q * P respectively, and 
s&u') = s p ( a ) ,  the parameter of stability s being defined as in equation (2.4). The 
previous definition (3.11) corresponds to s p ( a )  = S ~ . ~ ( U ' )  = 0. 

This pointwise construction of f Q  is possible owing to the property of internal 
similarity and to the fact that the zones of stability of the various periods do not overlap. 
It is apparently true from numerical calculations that these stability zones are dense. 
Thus one may assume (and we shall do it) that fa may be defined by continuity for any 
value of a. (As we already pointed out in § 2, a similar construction for mapping *P is 
not possible; we may write U Q . ~  = f p ( a ~ )  instead of (3.11), but we cannot extend it to 
the whole stability zone.) 

If 4 is the period of the sequence Q, obviously k ( a ' )  = qk(a ) .  The solution of 

a* =fQ(a*) (3.13) 

corresponds to a sequence P such that Q * P = P ;  whence P = Q*=, where the symbol 
Q*= represents the infinite sequence obtained as the limit of the sequences Q*N when 
N goes to infinity?. If a, = a Q*", then 

(3.14) 

More generally, if we consider sequences PI  * Q*" * Pz corresponding to parameters 
b, = U P ~ * Q * ~ * P ~ ,  we have b,+l= (fp1 O ~ Q  o f P t ) ( b , )  as b n  =fpl of; .fp2 ( a b ~ J .  The 
symbol 0 denotes the composition law for applications: ( f o  g ) ( x )  = f ( g ( x ) ) .  The fixed 
point is b,  # a, corresponding to the infinite sequence P1 * Q*m, but because of the 
chain rule the bifurcation velocity is again SQ. As already pointed out, PZ plays no role. 

Notice that SQ and VQ are not only functions of period q but of the sequence Q itself. 
Two sequences of the same period 4 have distinct bifurcation velocities. For example 
SRL2 # SRLR. This will be shown for small E in Q 5 .  

We are now able to derive the commutation law 

a Q l * Q 2  = & Q 2 * Q 1  (3.15) 
f We shall not enter here into the rigorous definition of infinite sequences. This has already been done in I. 
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and the corresponding law for critical exponents 

(3.16) 

f Q l * Q z  =fQl fQpQ1 =fQzofQl  
where 0 denotes again the usual composition law. 

Let a, and b,  be the fixed points for fQ1*Q2 and fQ2*Q1 respectively. Obviously 

b* =fQz(a,), a, =fQ,(b*). 

As 

(6 Q,*Qz = df Q I  *Qz/da 1 a =a,  = dfQ, /da 1 a = foZ (0 , )  dfQ,/da I LI =a,  

= dfo,/da Ia=b, X dfQz/da I a=a*  

is now a symmetric function of a, and b,, we easily obtain results (3.15) and (3.16). 
The fixed points a, and the universal metric constants VQ and SQ are known once the 

function fQ is known. Actually, even in the simplest cases it is not possible to get this 
function fQ exactly. The first-order correction when E is small is given in 6 5 .  When E is 
not small, we suggest different kinds of approximation schemes which are based on 
conjugation law (3.4) and are to be compared with the usual renormalisation methods. 
This will be done in § 4. 

3.5. Analogies and differences with critical phenomena 

We end this section with some remarks. Parameter a plays in bifurcation problems the 
role of temperature-r coupling constants-in the theory of phase transitions, and 
operation fQ is analogous to the recurrence relation which renormalises coupling 
constants. Similarly the critical temperature corresponds to the fixed point of fQ, and 
exponent 

Nevertheless, there is a big difference, as there are an infinite number of operations 
fQ. Two functions fa, and fQ2 define two renormalisations which have different critical 
points and critical exponents. 

If U Q ~  and a ~ ; =  are the fixed points of fQ, and fQz, then function k ( a )  diverges near 
aQt" and sop, then near fQ,(uQ:"), fQ;z(aQ:-), . . . , fQ,(aQp),  . . . and more generally 
for an infinite number of values of the parameter. The set of points for which k ( a )  is 
infinite is stable by all operations fQ and has the power of the continuum (even if these 
points are nowhere dense; see I). 

In  the theory of phase transitions, the renormalisation is a transformation of the 
coupling constants of some functional (in our case the coefficients of the Taylor 
expansion of the transform near its maximum could be seen as more or less similar to 
these coupling constants). This transformation can be made infinitesimal, so that it 
defines a semi-flow in the space of the coupling constants, or it can be made by finite 
steps in the so-called 'real space' renormalisation. In the problem we consider here, the 
discreteness is fundamental-fR multiplies any period by 2, fRL by 3, and so on-and 
the behaviour of function k ( a )  (length of the period as a function of a )  near a critical 
point (that is near a = a,) is not 

is related to the linearised expression for fQ near a,. 

k ( a )  - la - a Q" 1 "O 
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but rather of the form (3.10) 

k ( a )  - la - a  Q*ffi(YogQ(lnla 0'" - a  i/h 80) 

where gQ is periodic ( g Q ( x  + 1) = gQ(x)) and has a very complicated structure. (For a 
discussion of phase transitions, see, for example, Domb and Green (1976)). 

4. Approximate calculations of the function fa 

In this section we investigate various approximations for computing the function fQ that 
allow one to derive the quantities SQ and VQ (equations (3.9) and (3.13), (3.14)). Using 
rather simple arguments, we may approximate the raw numerical results with a relative 
error that may be of the order of one or two per cent. All our approximation schemes 
may be refined indefinitely, at least in principle. The numerical evidence shows that the 
next-order calculations yield improved numerical values, so that we may believe that 
these calculations do really converge towards well defined results which are actually 
independent of the approximation scheme. 

We describe first our calculations of a Q*= and SQ for Q = R and the C" endomor- 
phism Ya (x) with a single maximum 

Ya(x) = 1 - a x 2 .  (4.1) 

We then explain how these calculations must be modified in the case Q = RL. Although 
the extension of these computations to other sequences does not involve any difficulty, 
at least in principle, we shall not do it, as we have no numerical results for comparison. 

At the end of the section, we consider the nearly broken linear case ( E  - 0) defined in 
equation (1.1); all the methods we propose give the same result at the first order in E ,  

and we shall see in Q 5 that it is the first term of a systematic expansion near E = 0. We 
shall not restrict this calculation to the sequences Q = R and Q = RL as its extension to 
any Q is straightforward. 

The approximation schemes we developed for E = 1 may be also used for E # 1 or E 

not too small. However, when this exponent is no longer an integer, many expressions 
become very complicated and are difficult to handle from a practical point of view, but 
the principle of the method remains unchanged. We expect a good convergence to the 
exact value for small E .  The inaccuracy worsens as E increases. 

Finally, we give the exact expression for functions fQ for the piecewise linear 
mappings with a flat top. Their derivation will be done in a forthcoming publication. 

4.1.  Quadratic case and Q = R 

Let us consider the endomorphism Ya(x) = 1 - ax2  in the interval [ l ,  21 of values of the 
parameter a. If x belongs to the interval I ( a )  = [l -a,  11, then Ya(x) E I ( a )  so that the 
interval I ( a )  is stable under the action of Fa, and Ya has a single extremum in this stable 
interval. 

Let us now consider the range of values of the parameter defined by 1 < a  < ao, 
where a. is the real root of the polynomial X 3 - 2 X 2 + 2 X - 2 .  In this range of 
values of a, two disconnected intervals exist, I l ( a )  = [l - a, a - 13 and 12(a)  = 
[ 1 - a  + 2a2 - a3 ,  11, which are both stable under the action of Yz, and Yf has a single 
extremum in each of these intervals; of course Y a ( I l ( a ) )  c 12(a) and Y a ( I 2 ( a ) )  c I l (a ) .  
This helps one to understand the way in which the law of internal similarity holds: for a 
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given value of a, there exists a value A of the parameter corresponding to a mapping .TA 
and a homeomorphism h l  between I l ( a )  and I ( A )  such that 

(4.2) Y:(x)= hi 0 TA(X)O h;’ 

(see also figure 5). 

I c(x’ 

Figure 5. Segments I l ( a )  and I z ( a )  stable by transformation Fz for a given a. They are 
represented as full lines with the corresponding parts of Ya(,(x) and Yz(x).  

To our knowledge, there is no way of proving the existence of such a pointwise 
homeomorphism. This proof would require, in particular, a knowledge of all the 
invariant sets of S? and TA in I l ( a )  and I ( A ) .  In what follows we shall adopt a 
‘practical’ point of view and try to find in an approximate way the homeomorphism hl  
and the function f R ( a )  that gives the value of A by imposing a limited number of 
conditions to hl  and fR(A) .  As we shall choose very simple functions for h l ,  we shall 
assume implicitly that, at least for some values of a, hl is not a ‘wild’ function and can be 
actually fairly well approximated by this simple function. 

Remarks 

onto 12(a)  such that 
1. The same holds for the inverval 12(a ) .  We look for a homeomorphism h2 of I ( A )  

h 2 ( I ( A ) )  = I2 (a ) ,  h;’ 0 F: 0 h2= T A ,  (4.3) 

2. We are not able to say whether conjugation implies for h l  and h2 more than 
simple continuity. We think that, actually, hl  and h2 need to be differentiable at least. 

3. To find the function f~ is equivalent to looking for homeomorphisms Ill and h2 
(equations (4.2) and (4.3)). Practically, there is no hope of getting them from a series 
expansion. Even for the reduced functions Ta(x) = 1 - ax2 the homeomorphisms 
cannot be polynomials or rational functions, as can be seen by simple consideration of 
the degrees and factorisations for the polynomials that conjugation (4.2) or (4.3) would 
require. 

We are led to do simple approximations. In the following, we indicate several 
possibilities. 

4.1.1. Centred renormalisation with one parameter. We assume that conjugation law 
(4.2) holds and that in a first approximation h l  is linear. Keeping in T:(x) terms up to 
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second order, as (4.2) must hold for small x, we get 

1-a+2a2h?(x )=  h l ( 1 - A ~ ' )  

Parameters A and a are related through 
the solution of which is hl :  x + (1 - a)x. 

A = 2a2(a - 1) (4.4) 

which yields an implicit and approximate expression for f R .  From (3.13) and (3.14) 

a, = (1 +&)/2 

8R1 =aA/aal,=,,= (4-&)/13. 

(fixed point a, = 2aa (a+ - 1))  

and 

We get a ,  and 8,' with an error of 2.5% and 19% respectively. The results are shown 
in table 3, row 1. 

Table 3. Comparison of the different methods of renormalisation for the set of sequences 
R+". 

Method of calculation 6,' Relative Critical Relative yR1 Relative 
error point error error 
in ~i '  (YO) a R * -  in aR" (%) in y R  (Yo)  

Centred 
renormalisation 

1 parameter 0.1745 19 1.366 025 2.5 0.366025 8 
2 parameters 0.2064 4 1.400 030 0.08 0,394628 1.2 
3 parameters 0.2214 3 1.401 393 0.02 0.403403 1 

Non-centred 
renormalisation 

1 parameter 0.2265 6 1.457 107 4 
2 parameters 0.2117 1.5 1.402 414 0.09 
3 parameters 0.2133 0.4 1.401 003 0.01 

Non-linear 
homeomorphism 

1 parameters 0.1874 12 1.384 574 1 

1st equality of 
slopes 

1 parameters 0.1952 9 1.390 388 0.7 

2nd equality of 
slopes 

1 parameter 0.2167 1 1.401 420 0.02 

Experimental 
(measured) value 0.214 169 37 1.401 155 189 09 0.399 535 

4.1.2. Non-centred renormalisation with one parameter. We proceed in the same way as 
above, except that we have (4.3) as a conjugation law. In the interval 12(a) ,  S', reaches 
its maximum for the positive solution xo of Ta(xo) = 0. Homeomorphism hZ is assumed 
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to be linear: 

h 2 ( ~ )  = xo + AX. (4 .5)  

The choice of the constant term in this expression ensures that the extremum of S’, is 
mapped on the critical point of TA. For the reduced mapping (4 .1)  we get xo = a-1/2, 
xo+A = 1 (this last condition ensures that the common right boundaries of 12(a)  and 
I ( A )  are mapped onto each other). 

Then, by imposing again that the quadratic terms in S’, and h2 0 TA 0 hi‘ are the 
same, one obtains 

A = 4 ~ ~ ( 1 - a - ’ / ~ ) .  (4 .6)  

This yields, by using ( 3 . 1 3 )  and (3 .14) ,  the following ap roximate expressions for a, 

table 3 ,  row 4). 
and 8G1 : a, = (3 + 2 f i )  (relative error 4%),  8;’ = (3 - P 2)/7 (relative error 6%) (see 

4.1.3. Centred renormalisation with serveralparameters. To get a better approximation, 
we may consider a larger set of transformations depending on several parameters a, 6, 
c , .  . .: 

Ta,b,c...(X) = 1 - ax2 + bx4 + cx6  + . . . . 
The coefficients of T’,,b,c ,.., ( x )  are polynomials in a, b, c, . . . , and the stable segments I, 
11, I2 depend now on a, b, c, . . . . 

If we look for a centred approximation and assume that hl is linear 

Tz,b,c ... (hl(x)) = hl(TA,B,C ,... ( x ) ) ,  x E I ( a ,  b, c, . . .) 
we get 

3 5 
h l ( X )  = uox, A = ~ 2 ~ 0 ,  B = u4u0, c = u 6 u O  

where 
2 6 T’,,b,c,,,, (X )  = UO- U 2 X  -t U4X4 u6x + . . . 

and the ui’s are polynomials in a, b, c, . . . , 
Then the fixed point is the solution of A = a, B = b, C = c, . . . , and the unstable 

eigenvalues of the matrix of the derivatives give SR. 
For example, with two parameters a, b we get 

u4 = -a3  + 6 a 2 b  - 2ab + 4 b 2 .  ~ 2 = 4 a b - 2 a  2 , 

A = ( 1  - a  + b)(4ab - 2 a 2 ) ,  B = ( 1 - a + b ) 3 ( - a 3 + 6 a 2 b - 2 a b + 4 b 2 ) .  (4 .7)  

uo = 1 - U  + b, 

Then 

The calculations give very good results (see table 3 ,  row 2 ) .  The accuracy is improved 
further with three parameters (table 1 ,  row 3) ,  but approximations, though more 
accurate, become very complicated with more parameters. 

We have plotted on figure 6 the critical line and fixed point in the plane (a, b ) .  The 
value a, for T a ( X )  = 1 - ax2 corresponds to b = 0 on the critical line. The critical line 
stops at another fixed point a = 0, b = -1.545 corresponding to the sequence R*m and 
the transformation Tb(x) = 1 + bx4. 
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Critical fixed point 

c 
a 

Figure 6. Two-parameter centred renormalisation. The recurrence equations (4.7) have 
interesting fixed points. The origin is attractive; the fixed point of Tb = 1 + bx4 is repulsive. 
The critical fixed point P is unstable except for the critical line which goes through the fixed 
points of the one-parameter transformation Tb = 1 + bx4 (point M) and To = 1 - ax2 (point 
N). 

Important re marks 
1. This procedure is similar to that used in phase transition theory, where one assumes 
that the renormalised Hamiltonian is accurately described by a small number of 
'relevant' coupling constants. As we pointed out in the introduction, if we were looking 
to aR*-  and SR for another C" transformation, for example 

T,(x)  = 1 - a sinh' x - 1 - a (x2 + $x4) 

we should recover the same SR. The fixed point a R + -  is approximately at the 
intersection of the critical line with b = -a /3 .  

2 .  Non-centred renormalisation with several parameters. The same method holds for I Z  
and hZ ,  but, as T:,b.c,... is no longer symmetric around xo, we must include odd powers of 
x. For example, with three parameters a, 6,  c 

Ta,b,c (X ) = 1 - axz + bx + cx4 

and xo( f 0) is the solution of Ta,b.c(xo) = 0. Expanding Tz.b,c around xo we get 
3 4 

T:,b,< (Xo y )  = 1 - V z y 2  4- U3y i- U4y + . . . 
where again v2,  u3 ,  u4 are functions of a, b, c and 

3 A = uZ( 1 - xO), B = v3( 1 -xo)', c = u4( l  -xo) . 
We did calculations with two and three parameters (table 3, rows 5 and 6 ) .  The latter 
gives S i 1  with an error of 0.4% and aR*m with an error of O.0lo/o. This method is the 
most accurate among all we tried, and results should be still better with more 
parameters. Unfortunately, this method yields the longest renormalisation formulae! 

4.1.4. Nonlinear homeomorphism. Up to now, we have approximated homeomor- 
phisms hl and hz by linear functions. This is reasonable, as this is true asymptotically. 
Nevertheless we may ask whether a more elaborate choice €or hl and hz gives better 
accuracy. As an example, we look here at a, and S i '  when the renormalisation is 
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centred and with the homeomorphism h;' (x) = Ax + px3. From h;' (T:  ( x ) )  = 
TA(h;' ( x ) )  and neglecting all terms x", n 2 5 we get the equation for A 

( 4 . 8 ~ )  a ( U ) ~ 2  + P(U)A + r ( ~ )  = o 
where 

a(a )  = 8 

@(a) = 16~'-32a3+83a4- M a 5  +222a6- 318a7+255a8-75a9 

?(a )  = 64a6-208a7+368a8-608a9+736u'o-464a" + 1 1 2 ~ ' ~  

whence a, and 6,' (table 3, row 7). The accuracy is better than with centred (linear) 
renormalisation with one parameter, but not as good as the other approximations we 
described in 99 4.1.2 and 4.1.3. 

(4.86) 

4.1.5. Equality of the slopes. We deal only with sequences R*". The parameter s2" 

(equations (2.3) and (2.4)) which defines the stability zone for R*" is the slope of S ? ( x )  
at one point of the period. 

Sequence b(equa1 to the fixed point) is stable if I s1 /<  1, i.e.-a<a <a, where 
sl(a) = 1 -(I +4a)"'. 

Sequence R is stable if lszl< 1, i.e. $ < a  <s, where sz(a)=4(1 - U ) ,  and s4(a) is 
given by the implicit expression 

s42(a) 2 s: (a )  1 +2a2-3a3+3u4+ a6+&s4(a)(a4- a 3  - a 2 - 3 ) + - 7 - ( 3  - a )--= 0 
16 16 

which holds for :< a < d (destabilisation value). 
When -:<A <$, the function fR is given implicitly by s l (A)  = s ~ ( a ) ,  i.e. 

a = [3 + (1 +4A)"']/4 (4.9a) 

and when a < A < $, sZ(Aj  = s4(a j gives for a = f ~  ( A )  the implicit equation 

A3 +A2(9 - 4 ~ ' )  +A(27 +24a2 + 16a3 - 16a4) + 27 

+ 108a2-208a3 + 2 0 8 ~ ~  - 1 9 2 ~ ~  +64a6= 0. (4.9b) 

The analytic form for fR(A) changes at A = i ,  though both f R  and dfddA are 
continuos.  Using ( 4 . 9 ~ )  as an approximation for f ~ ,  we get a, = (7+J17)/8 and 
82' = (J17 - 1)/16. When (4.96) is used, the accuracy is much better (actually, it is one 
of the best approximations; see table 3, rows 8-9), as the expression (4.96) for f R  

corresponds to an interval which is nearer the limit point uR- .  

Remark 
One may notice that even the simplest methods sketched in this subsection give a good 
order of magnitude for a R * m  and S R ;  more elaborate methods (mainly non-centred 
linear renormalisation with three parameters, and the slope method of equation (4.9b)) 
give very accurate results. Neveitheless we are not able a priori to tell which method 
will give the best result. This is mainly due to our lack of knowledge of the manner in 
which these approximations converge to the exact result. 

One could improve these approximation schemes by increasing the number of 
parameters, but again we do not know if this will actually increase the precision. We 
have no knowledge of a proof of the convergence of all these methods to a single result. 
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4.2. Quadratic case (e = 1 and Q = RL)  

We indicate briefly how the above prescriptions are modified when we replace R by RL. 
The main point is that there are three disconnected intervals J1, J2,  J3 which are 

stable by S : ( x ) ,  Sa(J1) c J2,  S,(J2)  c 4, SOU3) c J1 for a range of the parameter 
a l  < a < a \ ; a l  and a being the values of the parameter a corresponding to sequences 
RL and RL * RL" respectively. On each interval S', has one extremum only and only 
one of these (say J1) is centred at x = 0. Choosing any one of these intervals J, 
( i  = 1, 2, 3), we may write 9: - SA, which implies the existence of a homeomorphism j i  
between I ( A )  and J i ( a )  such as 

ji(Z(A)) = J i ( a ) ,  S 3 , ( j i ( x ) )  = j i ( T A ( x ) ) ,  Vx E I ( A ) .  

We list here the analytic expressions for the simplest approximations for f R L :  

A = 4a3(a - l ) ( a 3  - 2a2  + a - 1) 

A = 8a 1 - a + L, first non-centred renormalisation with one parameter 

~ = 1 6 a i ( i + ~ ) [ i - - j = $ + ~ )  ] second non-centred renormalisation with one 

centred renormalisation with one parameter 

'( JZ 
1 1/2 

parameter 

[ 4 ~  - 7 + 4~ ( 4 ~  - 7 ) I / ' l 2  - 1 
4 

equality of slopes (sl(A) = s3(a)). A =  

Again a R L * ~  is known with a good accuracy and we have a good order of magnitude for 
8,;. We get better results with a centred renormalisation with two parameters (table 4). 

Table 4. Comparison of the different methods of renormalisation for the set of sequences 
(RL)*". 

Method of calculation 6 i i ,  Relative Critical Relative Y i z  Relative 
error point error error 
in 6,: (YO) aRL+ in a RL'= (%) in YRL ("0 1 

Centred 
renormalisation 

1 parameter 0.015077 17 1.784 998 0.08 0,099953 7 
2 parameters 0.018 118 0.1 1.786 466 0.0015 0.107 834 0.04 

1st non-centred 
renormalisation 

1 parameter 0.017176 5 1.787 164 0.04 

2nd non-centred 
renormalisation 

1 parameter 0.017721 2 1,787 696 0.07 

Equality of slopes 
1 parameter 0.016229 10 1.785 972 0.03 

Experimental 
(measured) value 0.018 1005 1.786 440 255 0.107 789 
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These methods might be extended to all sequences Q of period 4. In particular, it 
has already been shown that in some range of values of the parameter a, q disconnected 
intervals exist; each of them is stable under the action of T!) ( x ) ,  and this function has a 
single critical point in each interval (Guckenheimer 1977). 

4.3. Study of small E 

The same methods are developed for the mapping Ya(x) = 1 - u/x/"' when E is small. 
By the centred and non-centred renormalisation with one parameter we get for f R  

A = a2(1+E) (a  -1)' and A = a2(1  + ~ ) l " ( l - a - ~ ' ( ~ + ' ' ) '  

respectively, which gives to first order the same results: 

UR'" = 1 + Q ,  

V R  = -1 + ~ / 2 ( l n  2)cp 

S R  = 2 + E / ( P  hence 

(4.10) 

where cp is the solution of cp + E  In cp + E  = 0. We shall see in § 5 that this is the exacf 
first-order term. 

Similarly for Q = RL we get 

A = a 3 ~ a - 1 ~ ' ( 1 + ~ ) 2 ( a ~ a - l ~ ' + '  -1)' and 

11' -1/(1+') - A = a 3 ( l  la - U  

which gives for a ( R L ) * m  and S R L  the same first-order terms 

a (RL)*" ~ R L  + cp, S R L  Ea,,/V (4.11) 

where uRL is the root of 1 - u R L ~ u R L  - 111+' = 0, corresponding to the superstability 
point of sequence RL, and 

cp = c ~ [ ( ~ u R L -  I ) ( U R L - I ) I - ~ U ~ ~ : ~ .  (4.12) 

Again this is the precise first-order result as we shall see in § 5 .  Notice that, in contrast 
to SR,  SRL increases infinitely for E + 0; as a consequence the critical exponent Y R L  goes 
to zero. 

As even the simplest methods seem to give very good results for small E ,  we may 
continue and do the same thing with any sequence Q of period q. With the centred 
renormalisation method, as 

Ybk)(X) = s ; (0 )+( -a )k ( l+E)k - '  

xsgn(Ya(0).  . . YL~-')(o))/Y~(o). . . Y L ~ - ~ ) ( O ) ~ ~ I X ~ ' + ~  + . . . 

A = iYa(0). . . Sbk)(0)/' sgn(Fa(0).  . . Shk-"(0))(l + E ) ~ - ' U ~ ( - - ~ ) ~ - ' ,  

we get 

Sa(0), . . . ,2?:-')(0) are all far from zero, but Ybk)(0) is small and can be written as 

Yik)(o) = (a - aQ)(d/da)Sbk'(0) + , . . 
where UQ is the solution of Yh? (0) = 0 and corresponds to the superstability point for 
sequence Q, whence the first-order approximation for a, 

e - ( k - l )  - ( k - l ) / c  
U *  

IYa(0). . . YLk-')(O)1 I(d/da)St(O)l 
a* -aQ-  
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which generalises result (4 .12 )  and is exactly expression (5 .12 ) .  We recover that, when 
Q Z R , S ~ + ~ o ( a n d v ~ - * O ) i n t h e l i m i t ~ - , O .  

4.4.  Piecewise linear mapping 

We consider the transformation Tr,A(x) depending on two parameters r and A and 
defined by (figure 7) 

x < l  1 : i l +  r )  - A x  x < r .  

Tr.A(X)= A l < x < r  

For r = 1 we recover the so-called broken linear case E = 0 that we studied in I. Perhaps 
the broken linear transform in the limit r # 0, A -+ 30 could have something to do with the 
behaviour of Fa ( x )  when E + 03. 

Figure 7. Plot of T,.*(x) as a function of x. 

All calculations may be carried out. The iterates of T, ,  are piecewise linear 
functions with flat extrema. With two parameters, the linear renormalisation is then 
exact. For Q = R,  T;A  - TR,A, where 

A = A ~ ,  ( R  - 1 ) / ( R  + 1 )  = ( A  + l ) ( r  - l ) / ( A  - l ) ( r  + 1 ) .  

Similarly, fcr Q = RL, T:,A - TR,,,,,, with 

A ’ = A 3 ,  ( R ’ -  l ) / ( R ’ +  1 )  = ( A 2 + A  + l ) ( r -  l ) / ( A 2 - A  - l ) ( r +  1 ) .  

Remark 
The fixed points of these recursion relations go to infinity, and it can be shown that in 
this case the length of the periods diverges logarithmically near the critical values of the 
parameter. More generally, for Q with period k and characteristic polynomial PQ(x) = 
( Y O . .  . ( Y ~ - ~ B o ( x )  (see § 2 .2 ) ,  T:A - TR”.* ,  with 

( R ” -  l ) / ( R ” +  1 )  = (A‘ - l ) ( r  - 1 ) / ( A  - l ) P Q ( A ) ( r +  1 ) .  k A ” = A  , 
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5. Study of the superstable periods for E - 0 

As we saw in the preceding sections, we need only the behaviour of T, near its 
maximum. Then, in § 4, we considered the reduced transformation 

Y,(X) = 1 -alx/ '"  (5.1) 

depending continuously on the parameter E .  For E = 0 we recover the piecewise linear 
mapping 

2?,(x)= 1-alxl ( 5 . 2 )  

which we studied in some detail in I. The superstable (or MSS) parameters aQ are then 
the so-called A numbers. For small E the parameter UQ for sequence Q may be obtained 
by expansion near the A number of this period. The knowledge of UQ itself is not very 
important, but from equations (3.14) and (3.9) we may get the universal parameters So 
and vQ respectively. This is essentially what is explained in that section. The exponent E 

is given and assumed to be small although a is varying, and we shall call a the parameter. 
We use in a relaxed way the terminology first order, second order, . . . . Rigorously it 

is not correct, as the dependence in e will not be polynomial. When a quantity c $ ( E )  may 
be written as a sum 

4 ( E ) = 4 1 ( E ) + ~ z ( € ) + 4 3 ( € ) +  . . . 
with 

4 2 ( E ) / 4 1 ( E ) +  0 ,  4 3 ( € ) / 4 2 ( E )  0,  

then ~ I ( E ) ,  ~ z ( E ) ,  & ( E )  will be said to be of first, second and third-order respectively. 
As the case Q = R differs from the other sequences, i t  is studied separately in § 5.4. 
In the following, and UQ are the values of the superstable sequence when E = 0 

and E # 0 respectively; x , ( d o )  =LZ?d(O) and y,(ao) = Y?d(O) are the iterates ( a  = 
1, . . . , k) of the maximum when E = 0 and E # 0 respectively. 

5.1. Shift of the parameters of superstable periods 

When E is small, we rewrite { y , }  and aQ as 

y ,  = x ,  + €2, + O(E 2 ), 

and to first order, the iteration formula (5.1) gives 

u ~ = z ~ + E A u + o ( E ~ )  

Z, = -do(sgn x n - 1 ) Z n - 1  - A u ~ x , , - I / - ~ Q ~ x , - I ~  ln/xn-ll 

with 'sgn' being the sign function (equation (2.10)). 
The solution of (5.4) with initial conditions zo = z1 = 0 is 

(5.3) 

(5.4) 

the first sum being zero when n < 3. 
As Q is a k period, zk = 0, whence the shift of the parameter is of order E and 
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In (5.5) we have made explicit the dependence on the parameter EQ and x k ( d Q ) =  
PQ(~,-J) = 0, where 9 ( x )  is defined in (2.10). 

Notice that, if Q( = P1 * P2) is non-primary, as Po(dp,) = 9 p , ( d p , ) P p 2 ( d ~ , ) ,  both 
numerator and denominator factorise in ( 5 . 5 ) ,  EQ = H p ,  and A& = Adpl. Again it is not 
possible to separate non-primary sequences by a first-order expansion. We shall see in 
§ 5.3 that the splitting aplLP, - up, is very small. 

5.2. Zone of stability 

Now we assume that aQ is known, {y,} is the sequence of the iterates of the maximum, 
and we look for a value b of the parameter and for k numbers to(b), tl(b), . . . , fk-l(b) 
(fk(b) = to(b)) such that 

where ti = r b ( f i - 1 )  is the ith iterate of to, and 77 = f 1. 
When 77 = 0, b = UQ, although b, and b, mark the beginning (77 = + 1) and end 

(7 = -1) of the stability zone of the period Q in the parameter space. Equation (5.6) 
can be rewritten 

(5.7) 

As b=ao, then t i=yi  andsgnt i=sgnyi=sgnxi  if l c i c k - 1 .  We have t k=tO=O,  
and from (5.7) 

( -b)k( l+E)kl t l . .  . tkIf(sgn t i ) .  . . (Sgn t k ) = v .  

l t o l = b - k ' f ( l + E ) - k ' f / l f l . .  . tk-11 

with sgn to = (-l)k77 sgn(y1 . . . Yk-1). Then the stability zone is very small, and its width 
is proportional to b-k'E. Setting 

b - UQ = a zklfu, and t ,  - yn = a Gk"vn (5 .8)  
the recursion formula (5.1) gives to first order 

U, = -uQv, -~  sgnx,-l-ulxn-ll 

with general solution (compare with (5.4)) 

A being a parameter. With the initial conditions for to above, we get 

U n  = U (d/dUo)xn ( U Q )  + a &-k e-kCy,-2 . . .ao//yl . . . yk-11. 

The condition v k  = uo = t o a ~ '  reads to first order 

U(d/dUa)Xk(Uo)-e-kak-2.. . cUo/lyi.. . yk-11=-77((Yk-2.. . ~ Y o e - ~ ) / / y l . .  . Yk-11. 

(1) When 77 = -1 (end of stability zone) we get 

b,=ao+2(aGk" e (5.9) 
-k 

a k - 2 .  . . a o ) / / y ~  . . . yk-il(d/dao)Xk(Uo). 

For example, if k = 3, Q = RL and 

6, - UQ + 2U G3If e - 3 / ( d ~  - 1)(2& - 1) 
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where = (1 +&)/2 is the golden number. Notice that, as UQ - d o  - O(E) ,  uGk" and 
are not equivalent in the limit E + 0, although we may replace Y ~ ( U Q )  by x i (&) .  

(2) When 9 = +1 (beginning of stability zone) we get U = 0. The correction to the 
superstable parameter is at least of the order E U ~ ~ " ,  and to a first approximation the 
beginning of the stability zone and the point of superstability coincide. To get the 
second-order term, we replace ( 5 . 8 )  by 

-k /a  -- k /  b-aQ=EVUo , t, - Yn = a Q ' ( U n  + E V k )  

and keep in the iteration formula (5.1) all terms up to second order, getting 

(5.10) 

As a k - 2  . . . ao(d/daQ)xk(aQ) > 0 ,  we have b, < UQ < b,. We thus verify that the width 
of the stability zone (that is b,- b,) is very small and reduces to a point when E = 0. 
Moreover, when E = 0 the measure of the total stability zone is zero as no period is 
stable. We expected this result as the set {do} for E = 0 is countable. 

-k / s  -k b , = a ~ - € a ~  e CYk-2.. . ao/lY1.. . Yk-ll(d/dUQ)Xk(Uo). 

5.3. Splitting of non-primary sequences 

Sequence Q is now assumed to be primary with period k > 2, P is any other sequence, 
primary or not, of period 1. We look for the value U Q . ~  of the parameter for which the 
period Q * P is superstable. When E = 0, aQIp= do; near E - 0 (§§ 5.2 and 4.3), 
u Q * P - u Q  - u ~ ~ / ' u ~ " .  This implies that U Q . ~ ~  and aQlplrp, cannot be separated in a 
first-order approximation unless u p ,  = 1 (which corresponds to P 2  = R).  This is of 
course no longer true when we take into account higher-order terms. 

Proof. { t , }  (n = 1 , 2 , .  . . , k l )  is the sequence of iterates of the maximum for the value 
aQ.p of the parameter; we have tkl  = 0 and tkm # 0 (but small) if 1 < m < 1 ;  {y,} denotes 
again the sequexe  of iterates of the maximum for Q with parameter aQ. We have 
Yk = Y2k = . . . = Ylk = 0 and y k m + r  = yr (o  r < k ,  0 m < 1). 

Let us write 

t ,  = Yn + U", aorp = a~ + (5.1 1) 

and assume that terms of order uv,, vf, u 2  may be neglected compared with U, and U. 
When Y , , - ~  # 0 (or r # 1) the iteration formula (5.1) is rewritten 

Umk+r  = awr-2/yr-l/'(1 + E ) U m k + r - l  - U l y r - l / l + "  

although, if yn-l = O (i.e. r = I), v m k + l  = -aQ/Vmkl 1 +€ . 
The 'first-order' solution of the above recurrence equations is not obvious. After 

tedious manipulations and using results of 0 5.1 we derive the expression for vkl'(l'G I ) .  
As vkl  = 0 (periodicity condition) we get 

ln[U'lyi . . . yk-il'(ak/ap)(l + E ) k - l l ( d / d a ~ ) X k ( U ~ ) / f ] = O  

whence U and the formula 

UQ.p-aQ fa6k"ab'e e-(k-l)/lXl . . . Xk-11 l(d/dUo)Xk(dQ)l. 

The correction is small and the displacement is negligible for large periods. 

(5.12) 
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More generally, to first order 

The limit point a, is the solution of 

(equation (3.14)), whence 

and both a, and So do not depend on P, as expected. The bifurcation velocity for Q f R 
goes to infinity when E + 0, although S R  - 2 (see 0 3.2). Notice that we get the same 
first-order formula as in § 4. 

Expression (5.13) for the bifurcation velocity is a good approximation even when E 

is not too small. If we set E = 1 and Q = RL, then UQ = 1.7549, = 1.6180, and we get 
from (5.13) S i :  = 0.018 12, which is very close to the exact result. 

Usingnow (5.12) for sequences (Q1 * Qz)*" * P and QZ * (Q1 * Qd*"-' * P, Q1 and 
Q2 being primary and Q1, Q 2  # R, we get coupled equations for a(Q1*Q2)*n*p and 
a Q1*(Q2.Ql)t(n-1)*P, whence the multiplication formula 

5.4. The case Q = R 

The derivation of the above formulae does not work in the case Q = R, as uR = 1 and the 
quantity a zkJf which was considered as small in the previous case is now equal to 1. One 
consequence is that the values of superstability for the parameter of the harmonics R*" 
behave roughly as 1 + C , E  In E ( c ,  all distinct). Another big difference is that the 
bifurcation velocity is no longer infinite at E = 0, since S R  = 2 at E = 0. We shall see that 
the corrective term is a very slowly varying function of E as SR - 2 + €/(a*  - l ) ,  with 
a, - 1 - - E  In E .  For example, when E = S R  is still noticeably larger than its limit 
value. We find 8~ - 2 . 2 5 !  

Proof. For a given parameter a = 1 +cp,  cp being small, the set {tj(cp)}i=1,.. . ,2-+~ of the 
iterates of the maximum satisfy the recurrence relation 

where 1 s p s 2", & ( c p )  = f z n  (cp), and the coefficients A,, B,, Cp and D, are to be found 
by recursion and depend on the (2" - 1) numbers ai defined from the sequence R*" 
following the rules given in I or in equation (2.10). One has 
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whence, as sgn 4" = (-l)", 

c~,+l(rp)=$"(cp)[~ lnl$,(cp)I+(2"- ~ ) E + E  Inltl(cp). . . f2n-1(cp)/+2"cpl 

for every small cp. 

(5.15) 

The value of cp for which R*("+l) is superstable is the solution cp ( > 0) of 

E lnI$,,(cp)l+ (2" - 1 ) ~  + E  Inltl(cp) . . . r 2 m - 1  (cp)l+2"cp = o 
for example, for sequence R,  Gl(cp) = cp and cpl = 0, and for sequence R * R, $ ~ ( c p )  = 
(P(E In cp + E  + 2cp); and cp2 is the solution of 

E In cp + E  + 2cp = 0, cp2- -&(In € + I n /  In E / +  1 -In 2). 

The calculations quickly become very tedious in this way, and we substitute for 
sequence $" (cp )  the sequence ~ , , + ~ ( c p )  = $,+l(cp)/$n(cp) [xl = (PI. It is easy to prove that 

(5.16) 

(we use lnltl(cp) . . . t2"+1-1 (cp)l- 2 lnltl(cp) . . . t 2 n - 1  (cp)l +lnl$,(cp)/) and cpn is the root of 

X"+I(P) = 2 x n  + E + E In xn ( c p )  

X"(cp") = 0. 

xn-r(an) = X"(cpr.+l), 

As xn(qPn) =xn+~(cpn+d = 0 ,  we get from (5.16) 

Xn-Z(cpPn) = X n - l ( ( P n + l )  ' * . Xl(cp") = (Pn = XZ(cp"+l) 

whence 

~ G ~ , + I + E + E  lncpn+l=cpn. 

The limit value cp* = a ,  - 1 is then the solution of 

9* + E + E  In cp* = 0 

and 

(5.17) 

(5.18) 

(5.19) 

which is equation (4.10). 

not so bad as the relative error is less than 20%. 
Notice that for E = 1, cp* - 0.28, and using formula (5.19) we get S R  - 5 .57  which is 

6. Conclusion 

In I, the authors showed that the whole set of sequences of Metropolis, Stein and Stein 
has a property of internal similarity; in the present paper, it is shown that this internal 
similarity is not only of a purely algebraic nature. After a large number of applications 
of one of these similarity transformations, one gets a transform which is actually a 
contraction in the parameter space, with a constant ratio that is independent of the 
general shape of the transform, but depends only on its analytic structure near the 
maximum. 

It is also rather striking to observe that this kind of property exists also in the case of 
invertible mapping, as encountered in dynamical systems. In particular we have studied 
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from this point of view the Henon two-dimensional mapping 7 ' a , b ( ~ , y ) +  
(1 - ax2 + y ,  bx ) ,  a and b being parameters, and x and y real quantities (Henon 1976). 

There is no longer a critical point, as this mapping is invertible and multiplies the 
area by a constant factor b. Choosing for b the same value as HCnon did, b = 0.3, it is 
possible to follow on a computer the bifurcation from a stable period 1 to a stable period 
2, to a stable period 4 . . . to a stable period 2". The accumulation point for this set of 
bifurcations is reached at a, - 1.058 048 . . . when b = 0.3.  In table 5 we give the values 
of a corresponding to the occurrence of a stable period 2" with 0 S n S 8 (and to the 
destabilisation of the period 2"-'). The computations are noticeably more lengthy than 
in the case of endomorphisms of the line, as it is not possible to use the Newton method 
for finding the point of superstability which does not exist in this case, as the HCnon 
mapping has a constant Jacobian. It is rather striking to observe that all these values of 
a approach the limit a, in a geometric fashion, and that the bifurcation velocity is the 
same (up to three digits) as in the case of C" endomorphisms of the line. In order to 
justify this fact (in a very sloppy way of course!), one might just observe that after a large 
number of iterations, say N, the elementary area is multiplied by b N  and thus shrinks to 
zero, as N + CO when b < 1, so that the mapping is, in some sense, 'one-dimensional'. 
We hope to come to this point in a future work. 

Table 5. List of the zones of stability and approximations for the sequences R*" in the 
Htnon mapping. The calculations correspond to b = 0.3. The accuracy of S increases with 
n. We use formula (3.5) for S(n). 

n Period, 2" a, (beginning Approximation 
of stability) for S 

0 1 
1 2 

2 4 

3 8 
4 16 
5 32 
6 64 
7 128 
8 256 
9 512 
10 1024 
11 2048 

-(1- b)'/4=-0.1225 
3(1- b)*/4 = 0.3675 
5 + 56'-66 

4 
1,026 
1.051 
1.056 536 
1.057 730 83 
1.057 980 8931 
1458  034 452 15 
1.058 045 923 04 
1.058 048 379 80 
1.058 048 905 931 

= 0.9125 4.844 

4,3269 
4.696 
4.636 
4.7748 
4.6696 
4.6691 
4.6691 
4.6694 
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